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Theory of discontinuities is used to investigate the conditions at a shock wave in 

an elastoplastic medium with a nonassociative flow rule. A system of relations 

is proposed at the shock wave which represents, in general, the nonholonomic con- 

ditions which become integrable only when the problem of motion of the medium 

behind the wavefront is solved. In the present case, the Hugoniot adiabate inde- 
pendent of the flow behind the wavefront is absent. 

Equations for determining the plastic deformations of materials are generally 
written in terms of increments and must be integrated when solving specific prob- 

lems. If the problems are further complicated by the presence of surfaces of 

strong discontinuities. then the integration can only be performed when the usual 

equilibrium relations are supplemented by additional boundary conditions at 

these surfaces. In the present paper we show that, in the absence of the displace- 

ment discontinuities. such a condition must be given in the form of the condition 

of continuity of displacements. The analysis is carried out with the finite char- 
acter of the deformations taken into account. 

The defining incremental constraints are nonholonomic [ 11 and cannot, in ge- 

neral, be integrated independently. In such cases the relations connecting the 
parameters of the system at the strong discontinuities cannot be reduced to a 

system of finite, closed relations. Thus the Hugoniot adiabate will not, in general, 

exist in dilating plastic materials [ 21 irrespective of the motion outside the strong 

discontinuity. 
Some authors [3- 51 construct additional relations at the strong discontinuity 

(they can be used to obtain finite relations across the shock) by analyzing the 
inner structure of the discontinuity, with the help of the same defining equations 
sometimes supplemented by viscosity terms and a hypothetical loading route. 
The specific character of the conditions at the strong discontinuity obtained by 
the passage to the limit from the continuous structure, was noted by Sedovin fl]. 

In accordance with the approach developed in this paper, we must consider the 
structure of the shock transition in order to estimate the changes in the initial 
state (reference state) of the material point passing across the shock front. For 
this reason the system of equations for the structure must be chosen, in order to be 
adequate, from the continuous generalized models. 
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1, Let us consider an elastoplastic medium [S, ‘I] with a nonassociative flow rule 
described by linear tensor relationship. We shall use the Eulerian representation of mo- 

tion. 

The total strain cjj increments appear as the sum of their elastic and plastic compo- 

nents 
Deij = Deije + DeijP = EijDt (1.1) 

i?ij = ‘1, (??i,j + Cj,i), Vi,j = dPi / dXj 0.2) 
De.. 

z3 
aeij aeii 

Dt =at + “kq - ei,SZkj - L?jkClkj + eik&,j + ejkeki) 

Here D denote the increments corresponding to the derivative in the Oldroyd’s sense 
[8] (the expression in the parentheses) and E. lj is the strain rate tensor. On the other 
hand, the total strains eij themselves which are, generally speaking, not small, are given 

in terms of the displacements Uij by the following Almansi relation: 

eij = l/s(Ui,j + Uj,i - uk,iuk,j) (1.3) 

As we know (see e.g. [8, 9]), the relations (1.1) and (1.3) do not contradict eachother 

since the tensors eij and Eij are connected by the formula 

etj = Deij I Dt = d’eij I dt + eikEkj + ejkeki 0.4) 

here d’ / & denotes the derivative in the Jaumann sense. 

The small elastic strains Deij’ are connected with the stress increments Dcrij by 
means of the Hooke’s law 

Daij = hDekke6ij 3- $Deij’ 

where h and p are the Lamk coefficients. The above formula corresponds to the linear 
elastic law in the Lagrangian coordinates. In terms of the rates of change of the stresses 
and strains, these relations assume the form 

Da:. 
“=h 

Dt (1.5) 

The authors of [6, 71 used the following Jaumann derivatives of the stresses 

d’oij I dt = Chij I dt - 0ikQ;2kf - UjkQ,i 

and assumed that aij = deij / dt, where d / dt = d / dt $- Vhd / dXk is a substan- 
tive derivative. We note that the relation (1.5) with t?ijP = 0 corresponds to theTrue- 

sdell [8] model of a linearly hyperelastic material. 
In accordance with the principles of the incremental theory of plasticity in the tensor- 

linear isotropic case, the relation between the plastic strain increments and the stresses 

can be written in the form n] 

DeijP = dc (1/3~kk - H)6ij + d$ (oij - ‘/3okkSij) (1.6) 

Here c, II, and H are scalar functions of the state parameters of the medium. The 

functions 5 and ‘Ic) are assumed unknown, and to find them we introduce [S] two addition- 
al conditions of plastic strain 

@0 = (aij, a, Y7 X7 . . .) = v/J2/ + ~l,aJ, - Y = 0, 0.7) 

J, = oh,t, J, = oij’cij’ 
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The first of these conditions represents the von Mises-Schleicher flow condition for the 
stresses, and the second condition is a kinematic constraint for the plastic strain rate 

tensor (the dilatation condition [7]), J, and It are the first invariants of the stress 
tensor and plastic strain rate tensor, J, and 1, are the second invariants of the devia- 

tors of the stress and the plastic strain rate tensors, a($, y_) and Y (x) are the coef- 

ficients of internal friction and cohesion, X. is the hardening parameter and .\ f x, 1) 
is the dilatation rate. 

The dilatation condition (1.8) makes possible the elimination of H and j using the 

following relations: dc = - 2~, Aad+, ff = a-lY. Then the relation between 

the strains and stresses (1.5) assumes the form 

DehkF’ = ‘Ia .4a(11,a-1Y - a,,)@, Deij’P = oij’d$ (1.9) 

When the law is associative, we have a SE A F]. The governing equations (1.2), (1.5) 

and (1.9) and the flow condition (1.7),together with the continuity and motion equations 

do / dt A- f)L‘h,Q :~= 0, f)dt,i / dt =m 0ij-j + Fi CL 10) 

form, with the hardening functions & (J, x) and Y (x) known, a closed system of 

equations of the dynamics of an elastoplastic dilatating medium. Here p is the density 

of the medium and Fi denotes the mass force. 

Certain relations in the above system represent finite constraints connecting the basic 

functions (the condition of flow). Other equations (nonassociative law (1.9) governing 

the plastic increments, the Hooke’s law (1.5) and the possible functional dependence of 

X on the process) can only be integrated together with the continuity and motion equa- 

tions (1.10). 

2. Let an isolated surface Z propagate through the medium and let the stresses,rates 
of change and their derivatives with respect to the coordinates xi and time t , suffer a 

discontinuity at this surface 

/@ii] # 0, I231 # 0, . . ., ~~~~~~~~~~~~~~~ . . . dz,“&c,“l # 0 
l! -+ m + n + p == k 

We assume that the flow conditions hold on at least one side of Z. The displacements 
of the material medium are assumed continuous 

IUil == 0 (2.1) 
The laws of conservation of mass and impulse at the shock wavefront [l] have the form 

[pGl 27 0, [GijInj + pGI~.il = 0 c.La 

where G -2 D - v, is the normal velocity of the shock wave with respect to the mate- 
rial particles, D is the same velocity relative to the fixed coordinate system and ni 

is the normal to the surface 2. We assume that the process of material deformation is 
not temperature dependent. therefore the balancing law for the energy and the entropy 
increase at the disc~tinui~ is not given. 

In finding the jumps in the values of the finite deformations at the surface of discon- 
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tinuity 1c we shall use the local n, y t, Ys coordinate system which corresponds to the 

vector FSi and to the vectors zli and rstzi tangent to 2. Because of this, the derivatives 

in zi transform to the derivatives in the local coordinates in accordance with the rule 

(9 / dzi = (a / an)nl + Xi, a g,p (d / dyp) 

(Xicr = Xi# = 3% / %I,* &CL3 = %Qp) 

Here Xi = Xi (&, $t,, t) is the equation of the surface of dis~ntin~~ Z: and gag 

is the metric tensor [IO]. 

Applying the above rule to (1.3) and putting together the differences in the values of 
the total strains eij on each side of the surface Z, we obtain a relation for [eil]. By the 

condition n 0] tank / dysl = a[u,l / dyp 

the requirement (2.1) of the continuity of displacement means that 

MuA f d&J = 0 (2.3) 

Therefore the relation for the jump in the values of the total strains is simplified to 

The rate of displacement vi in the local coordinate system has the form 

vi = dui / dt = 6ui I 6t - Gihi / dn +- v~x,,gapdui/dyp 

where 6 / 6t denotes the derivative with respect to time on the moving surface [lo]. 

Again, by virtue of (2.1) we have 

I&Q I &I = 6[Uil / 6t = 0 (2.4) 

therefore the jump in the rate of displacement assumes the form 

IVJ = - if2au, I ad + [v~l~~~g~~au~/ ah 
Passing to the stresses we note that their values on the side of Z at which plastic 

deformation occurs, are connected by the plasticity condition. In particular, if we assume 

that the condition (1.7) holds in front and behind the surface of discontinuity 2, we can 

obtain from it the following constraint for the jumps in the values of stresses: 

The jumps [Doij / Dtl, VIeif / D tl and fD eijP /D t] are connected by the 

linear condition (1.5). To express this condition in terms of the jumps in the functions 

themselves, in their derivatives with respect to the coordinates and of the time deriva- 

tives of the jumps in the functions, we first note the following relation: 



which follows from the definition of the time derivative, in the Oldroyd’s sense, of an 
arbitrary tensor aij. Setting 

&j = Oij - AekkGij - 2/Mij + 3LekkP 6ij + 2peifP 

and taking the difference between the expressions (2.3) om the left and right side of 2, 

we obtain the following condition on the shock wave: Daij 
[ 1 7 -0 (2.6) 

The derivatives of the velocities entering (2.6) can, in turn, be written in terms of the 

displacements ur in the following manner: 

Finally, the plastic governing relations (1.9) written in the local coordinate system close 
the equations at the surface of the discontinuity. In fact, setting together the difference 

between the expressions (1.9) on the left and right side of the front 2, we obtain 

The system (2.1) - (2.7) of relations constitutes the boundary conditions at the surface 
of discontinuity for the unknown functions or], eij, eijP, vi, 4 and p and makes pas- 

sible the solution of the Cauchy problem for the system (1.5), (1.7) - (1.10) in the per- 

turbed region, with the boundary conditions on z given above. The relations are non- 

holonomic, since they contain the jumps in the functions themselves and in their normal 

derivatives, i. e. they cannot, generally speaking, lead to finite relations between the 

quantities sought at the front, which would be independent of the flow outside the surface 

of discontinuity. 
To integrate the equations of state (1.5) in the region of continuous variation (outside 

the front), we must know the initial reference states for each material particle, namely 

the values of the total strains resulting from certain known stresses. These initial states 

may be the same for all particles (homogeneous initial states), can differ by virtue of 
the initial inhomogeneity of the material or, which is the most important feature, the 
shock wave itself can alter these states. For this reason the system of equations at the 
wavefront given above, must be supplemented by the conditions for the jumps in the 
initial states. 

The magnitudes of these jumps and their dependence on the strength of the shock wave 
can be found by analyzing the structure of the jump. A generalized continuous model 

must be employed, and it must be adequate for such passages which cannot be obtained 
by a continuous motion of the medium in the region under consideration Cl]. 

Any given state of stress oIJp can be used as the reference state, but the correspond- 
mg strains ei j ’ and e&’ must be known..Then an analysis of the structure is necessary 
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for the determination of the jumps feij”l and t@I in the material particle of the 
medium. 

Finally, in the most general case, the analysis of the structure of a discontinuous pas- 
sage within the framework of the generalized models may yield a nonzero jump in the 

displacements u1 themselves, i. e. the process of specifying the jumps in the initial states 
and displacements may turn out to be interrelated. The analysis of these variants requi- 

res a concreti~tion of the continuo~ models of the intrashock passages, 

3, In the case of a spherically symmetric motion the equations (1.5), (I, ‘7) - (1.10) 

for the radial stress (2, and annular stress (TQ = Oq , the radial and annular total and 

plastic strains e,, ea = e,, erP, egp = e, * , the displacement u, density p and the 

scalar 9 assume the form 

(3.1) 

- GQ) = a (6, + 26Q - ‘/QY / a) 

X = sign (0, - 63) = sign (de,P - deep) 

-+ (e,.’ f 2eQp) = r+ A% -$ (erp - eQ") 

We can see that the system (3.1) is integrable without the last equation which defines 
the variation of the function 9. 

The conditions at the surface of discontinuity corresponding to the system (1. l), have 

the form 
[pGI = 0, Ia,1 + pG[vl = 0 (3.2) 

-3+[G+]-_2[$+0, tjf+[Gi!+=() 

[%I = [-$I - -+- [($)“I , If331 = 0 
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where 

a11 = cr, - (h + 2p)(e, - erp) - 2h(e0 - eep) 

a22 = cre - 2(h + p)(ee - eeP) - h (e, - erp) 

In the case of small strains, the terms 

[(au / &.)“I, ra,,a(o - z>s) / ar1 

in the relations at the shock wave can be neglected. For small total strains and a plas- 

tically incompressible material, the assumption that the velocity D of propagation of 
the wave is constant, yields D from the relation pDz = (3, + 2/3p) and the value 
coincides with the velocity of the elastic wave. 

In the case of small strains, Eqs. (3.1) and relations (3.2) reduce to those obtained in 

r_lll. 
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